MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in lots of fields. The following is a comprehensive overview of the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material composed of M, A, X elements around the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the main group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, three of the components of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they are commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is actually a new kind of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, consisting of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A means the main-group elements, and X means the elements of C and/or N. The MXene material is really a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MXenes material are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials get them to have an array of applications in structural materials. For example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be used in functional materials. For example, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. As an example, K4(MP4)(P4) is one of the MAX materials with high ionic conductivity and electrochemical activity, which can be used a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials certainly are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The surface of MXene materials can communicate with more functional atoms and molecules, and a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually include the etching treatment of the MAX phase as well as the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials really are a new kind of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are commonly used in energy storage and conversion. For example, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials may also be used as catalysts in fuel cells to improve the action and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. As an example, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and may be used in sensing and detection. For instance, MXene materials can be used gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. Additionally, MXene materials may also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, with all the continuous progress of technology and science as well as the improving demand for services for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will likely be further expanded and improved. The following aspects can become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and methods could be further explored to comprehend a much more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, there is however still room for more optimization. Down the road, the composition, structure, surface treatment and other facets of the material could be studied and improved in depth to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be commonly used in lots of fields, but there are still many potential application areas to get explored. Down the road, they can be further expanded, like in artificial intelligence, biomedicine, environmental protection as well as other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in many fields. Using the continuous progress of technology and science as well as the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.